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Abstract

We compare estimating Black-Scholes option prices for GBM by estimating pa-
rameters from a batch of simulations and using exact formulas versus Monte Carlo
pricing directly from the simulations.

1 Introduction

Suppose we are confronted with a batch of simulations of a geometric Brownian motion
process(GBM). Without loss of generality, we can assume that all simulations have the
same initial point. We shall also assume that the simulations are under a risk-neutral
measure. Using these simulations, we could compute the price of an option on the GBM in
at least two distinct ways. For the moment, we shall focus on European call or put options.
We could estimate parameters using statistics of the simulations, and then compute the
exact Black-Scholes option prices using these estimated parameters. Or we could use the
simulations directly to compute option prices in the Monte Carlo way as the average of
the payoffs over all the paths. One may ask which method would be preferable in general.
We shall attempt to answer his question when we know the generating stochastic process
is GBM.

In what follows below, we shall at times write some messy formulas. The idea is to
have them recorded here so that we can use this document as a guide to code the formulas,
without having to rework the calculations.

2 Quick Review of MLE estimation

Let us assume that we have an iid sample {Zi} of size n from a normal distribution N(µ, v).
Let us consider joint estimation of µ and v. We shall denote the vector of parameter values

θ
def
= (µ, v), with θ̂ denoting the vector of their estimates. Then the maximum likelihood

estimator (MLE) for the mean is given by the sample mean
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µ̂n
def
=

1

n

n∑
i=1

(Zi) (2.1)

and the MLE for the variance is

v̂n
def
=

1

n

n∑
i=1

(Z2
i − µ̂) (2.2)

Remark 1. Often one considers the same formula to estimate the variance, but dividing
by n− 1, instead of n. Such an estimator is unbiased, whereas the MLE is not. However,
the MLE is asymptotically unbiased, and has lower variance. One could make simple
adjustments to the formulas that follow to accomodate the other estimator.

Standard asymptotic theory for MLE gives

√
n(θ̂ − θ)→ N(0, I−1) (2.3)

where I is the Fisher Information matrix (of one of the samples). In this case, the Fisher
Information matrix is

I =

 1
v

0

0 1
2v2

 (2.4)

2.1 Delta Method

Suppose we have a function g(x, y) which is differentiable in each variable. Then the
so-called “delta method”, which may be proved using a Taylor expansion of g, implies that

√
n(g(θ̂)− g(θ))→ N(0,∇g(θ)T I−1∇g(θ)) (2.5)

2.2 Change of Variable

The MLE is well-behaved under a change of variable of the parameter vector θ. Let
h(x, y) be an injective function. Then the MLE of h(θ) is h(θ̂). Furthermore, the Fisher

Information matrix transforms in a simple way when h is differentiable. Let β
def
= h(θ).

Then

I(θ) = JT I(β)J (2.6)

where J is defined as Ji,j
def
= ∂βi

∂θj
.
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2.3 Geometric Brownian Motion Estimation

We shall consider samples from a GBM process which we shall write as

dX = µXdt+ σXdW (2.7)

Let us suppose we have a batch of m independent simulations for the process (2.7) as

above, and that we wish to estimate the vector of parameters θ
def
= (µ, σ). If we make the

change of variable Y = log(X) and apply Itô’s lemma, we get

dY = (µ− σ2

2
)dt+ σdW (2.8)

From which we derive

Y (t) = Y (0) + (µ− σ2

2
)t+ σW (t) (2.9)

Although not necessary, for ease of presentation we shall assume that the total time T

is divided into n equal increments of ∆t, so T = n∆t. Let Yi
def
= Y (i∆t) and Zi

def
= Yi−Yi−1.

Hence the Zi are n independent draws from N((µ− σ2

2
)∆t, σ2∆t).

Since our ultimate goal is to estimate the error in Black-Scholes prices, we could work
with the variables (µ − σ2

2
)∆t and σ2∆t directly. However, as a point of general interest,

we’ll examine the uncertainty in estimating the GBM parameters µ and σ directly.

Let us consider then the change of variable mapping θ to β (in the notation above)

(µ, σ) 7→ ((µ− σ2

2
)∆t, σ2∆t) (2.10)

which is injective on the upper half plane defined by σ > 0. Then the Fisher Information
matrix transforms as JT I(β)J where

J =

∆t −σ∆t

0 2σ∆t

 I(β) =

 1
σ2∆t

0

0 1
2σ4∆t2

 (2.11)

Working this out, we get

I((µ, σ)) =

 ∆t
σ2 −∆t

σ

−∆t
σ

∆t+ 2
σ2

 I−1((µ, σ)) =

σ2(2+σ2∆t)
2∆t

σ3

2

σ3

2
σ2

2

 (2.12)

We shall summarize the above results in a proposition.

Proposition 1. Consider a GBM process dX = µXdt+σXdW . Suppose we have m paths
of n equal increments ∆t, with the same initial value X(0). We denote the observations
as {Xij}, where i = 1, 2, . . . , n denotes the values of the jth path (j = 1, 2, . . . ,m) at time
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i∆t. Then the MLE estimators of µ and σ are given by

σ̂ =
√
v̂ (2.13)

µ̂
def
=

1

mn∆t

∑
ij

Zij +
σ̂2

2
(2.14)

v̂
def
=

1

mn∆t

∑
ij

(Z2
ij)−

1

mn

(∑
ij

Zij

)2
 (2.15)

and √
mn
[
(µ̂, σ̂)− (µ, σ)

]
→ N(0,Σ) (in distribution) (2.16)

where

Σ =

σ2(2+σ2∆t)
2∆t

σ3

2

σ3

2
σ2

2

 (2.17)

3 Quick Review of Black-Scholes Formula

Lemma 1. Let X(t) be a stochastic process which is log-normal at time T . Let m =
E(log(X(T ))|Ft) and v = V ar(log(X(T ))|Ft). Let β,K1 ≤ K2 ∈ R. Then

E[X(T )βI(K1 <X(T ) < K2)|Ft] = (3.1)

eβm+
1
2
β2v

[
N

(
log(K2)−m− βv√

v

)
−N

(
log(K1)−m− βv√

v

)]
(3.2)

where N is the cumulative standard normal distribution function

N(x) =
1√
2π

∫ x

−∞
e−

1
2
z2dz

Remark 2. This formula makes sense for K1 = 0, and also for K2 =∞.

Let us suppose that X(t) is the GBM process (2.7) under a risk-neutral measure. Let
us fix the initial value X(0), the risk-free rate r(assumed to be constant), the total time, T ,
and assume that the risk-neutral drift µ is possibly different from the risk-free rate. Then
in the formula of Lemma 1, we have m = log(X(t)) + (µ− σ2

2
)T , and v = σ2T . Let K > 0

denote a strike price. Recall that a European call option may be priced via

e−r(T−t)E[(X(T )−K)I(K < X(T ) <∞)|Ft] (3.3)

Let us give a name to this random variable

Υ
def
= e−rT (X(T )−K)I(K < X(T ) <∞) (3.4)

So that the Black-Scholes call option price is given by E[Υ|Ft]. For applications below, we
shall compute a few statistics of this random variable, both easily evaluated using Lemma
1.
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Lemma 2.

E[Υ|Ft] = e−r(T−t)
[
em+ v

2N

(
m+ v − logK√

v

)
−KN

(
m− logK√

v

)]
(3.5)

V ar[Υ] = e−2r(T−t)A− (E[Υ|Ft])2 (3.6)

where A is defined via

A
def
= e2m+2vN

[
m− logK + 2v√

v

]
− 2Kem+ v

2N

[
m− logK + v√

v

]
+K2N

[
m− logK√

v

]
(3.7)

Similar formulas hold for put options.

4 Computing Black-Scholes with Estimated Parame-

ters

Next we shall apply the delta method described above. Let g(µ, σ) be the Black-Scholes
call-option price (3.5), considered as a function of µ and σ. We have then

g(µ, σ)
def
= e−rT

[
X(0)eµTN

(
log X(0)

K
+ µT + σ2

2
T

σ
√
T

)
−KN

(
log X(0)

K
+ µT − σ2

2
T

σ
√
T

)]
(4.1)

Then we can work out that

∂g

∂µ
=e−rT

[
X(0)TeµTN

(
log X(0)

K
+ µT + σ2

2
T

σ
√
T

)
(4.2)

+X(0)eµT
∂

∂µ
N

(
log X(0)

K
+ µT + σ2

2
T

σ
√
T

)
−K ∂

∂µ
N

(
log X(0)

K
+ µT − σ2

2
T

σ
√
T

)]
(4.3)

∂g

∂σ
=e−rT

[
X(0)eµT

∂

∂σ
N

(
log X(0)

K
+ µT + σ2

2
T

σ
√
T

)
−K ∂

∂σ
N

(
log X(0)

K
+ µT − σ2

2
T

σ
√
T

)]
(4.4)

where

∂

∂µ
N

(
log X(0)

K
+ µT ± σ2

2
T

σ

)
=

1√
2π
exp

{
−

(log X(0)
K

+ µT ± σ2

2
T )2

2σ2T

} √
T

σ
(4.5)

∂

∂σ
N

(
log X(0)

K
+ µT ± σ2

2
T

σ

)
=− 1√

2π
exp

{
−

(log X(0)
K

+ µT ± σ2

2
T )2

2σ2T

}[
log X(0)

K
+ µT

σ2
√
T

∓
√
T

2

]
(4.6)
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From this, it is straightforward to see that g′(σ) 6= 0. Applying the delta method de-
scribed above, we obtain the error in the Black-Scholes formula using estimated parameters
θ̂ = (µ̂, σ̂).

√
mn
(
g(µ̂, σ̂)− g(µ, σ)

)
→ N(0, w) (in distribution) (4.7)

where w is given by

w = ∇g(θ)TΣ∇g(θ) (4.8)

where ∇g(θ) = ( ∂g
∂µ
, ∂g
∂σ

) and Σ is given by (2.17).

5 Computing Black-Scholes with Monte Carlo

This case is much simpler to analyze. Let us consider the random variable (3.4)

Υ
def
= e−rT (X(T )−K)I(K < X(T ) <∞) (5.1)

where X is the GBM process (2.7) as above. The mean of this random variable is the
Black-Scholes option price. We can estimate the mean of a random variable with the
sample mean. For our batch of independent simulations of X, we compute the average of
this call formula for the final path values. Let us denote this (for m simulations)

Υm
def
=

1

m

m∑
i=1

e−rT (Xi(T )−K)I(K < Xi(T ) <∞) (5.2)

By the central limit theorem, we get

√
m(Υm − E[Υ])→ N(0, V ar[Υ]) (5.3)

and we have computed both the mean and variance of Υ above in Lemma 2.

6 Summary

We have considered a scenario involving m simulations of independent GBM simulations
with n increments each. The process is assumed to be under a risk-neutral measure, and
all simulations have the same initial point. We considered computing a Black-Scholes
European call option price using the information in the simulations by either estimating
GBM parameters and plugging the estimates into the closed-form Black-Scholes formula,
or by computing the Monte Carlo price directly out of the simulations. In both cases,
we derived asymptotic normal densities for the error in the Black-Scholes price, where by
error we mean the difference between the actual price using the known parameters which
generated the simulations and the option price obtained by estimation techniques. We
have double-checked all formulas using monte carlo testing.
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7 Some Numbers

7.1 An Example

option type: GBM CALL ; riskNeutralDrift: 0.05 ; vol: 0.2 ; int rate: 0.05

init price: 30.0 ; strike: 100.0

timeToMat: 10.0 ; dt: 1.0

num time steps for each path: 10

num simulations of paths: 2000

theoretical option price with known parameters: 1.745647

BS formula with known drift and estimated volatility asymptotic error stddev: 0.027552

BS formula with estimated drift and volatility asymptotic error stddev: 0.098865

Monte Carlo option pricing asymptotic error stddev: 0.209262

7.2 Same Example Equal Number Data Points For Both Esti-
mations

option type: GBM CALL ; riskNeutralDrift: 0.05 ; vol: 0.2 ; int rate: 0.05

init price: 30.0 ; strike: 100.0

timeToMat: 10.0 ; dt: 10.0

num time steps for each path: 1

num simulations of paths: 2000

theoretical option price with known parameters: 1.745647

BS formula with known drift and estimated volatility asymptotic error stddev: 0.087148

BS formula with estimated drift and volatility asymptotic error stddev: 0.156218

Monte Carlo option pricing asymptotic error stddev: 0.209262


