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Introduction

We aim to do the following.

Explain the basics of the Kalman Filter .

Explain the relationship with MLE estimation.

Show some real applications.
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Applications

Keywords: estimation, control theory, signal processing, filtering,
linear stochastic systems.

Navigational systems. Used in the Apollo lunar landing. From the
NASA Ames’ website:
“The Kalman-Schmidt filter was embedded in the Apollo navigation
computer and ultimately into all air navigation systems, and laid the
foundation for Ames’ future leadership in flight and air traffic
research.”

Satellite tracking. Missile tracking. Radar tracking.

Computer vision. Robotics. Speech enhancement.

Economics, Math Finance.
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Gauss was no dummy!

Late 1700s. Problem: estimate planet and comet motion using data
from telescopes.

1795. Gauss first uses least-squares method at age of 18.

1912. Fisher introduces the method of maximum likelihood.

1940s. Wiener-Kolmogorov linear minimum variance estimation
technique. Signal processing. Unwieldly for large data sets.

1960. Kalman introduces Kalman filter.
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Minimum Variance Estimators

Let (Ω,P) be a probability space.

Definition (Estimator)

Let X , Y1,Y2, . . .Yn ∈ L2(P) be random variables. Let

Y
def
= (Y1,Y2, . . . ,Yn). By an estimator X̂ for X given Y we mean a

random variable of the form X̂ = gY, where g : Rn → R is a given
Borel-measurable function.

Definition (Minimum Variance Estimator)

An estimator X̂ of X given Y is called a minimum variance estimator if

‖X̂ − X‖ ≤ ‖hY − X‖ (1)

for all Borel-measurable h. Let us denote MVE (X |Y)
def
= X̂ .
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Minimum Variance Estimators

MVE (X ) = E (X |Y)

Let M(Y)
def
= {gY|g Borel-measurable, gY ∈ L2(P)}. Then M(Y)

is a closed subspace of L2(P), and MVE (X |Y) is the projection of X
onto M(Y).

As a corollary, MVE (X |Y) exists, is unique, and is characterized by
the condition:

(MVE (X |Y)− X ) ⊥M(Y) (2)

Steven Lillywhite () Kalman Filtering and Model Estimation 7 / 29



Linear Minimum Variance Estimators

Definition (Estimator)

Let X , Y1,Y2, . . .Yn ∈ L2(P) be random variables. Let

Y
def
= (Y1,Y2, . . . ,Yn). By an linear estimator X̂ for X given Y we mean a

random variable of the form X̂ = gY, where g : Rn → R is a given linear
function.

Let’s ramp it up a bit by letting X be multi-dimensional.

Definition (Best Linear Minimum Variance Estimator)

Let X ∈ L2(P)n,Y ∈ L2(P)m. An linear estimator X̂ of X given Y is
called a best linear minimum variance estimator if

‖X̂− X‖ ≤ ‖hY − X‖ (3)

for all linear h. Let us denote BLMVE (X|Y)
def
= X̂ . Here h is given by an

n ×m matrix.
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Linear Minimum Variance Estimators

If X and Y are multivariate normal, then
MVE (X|Y) = BLMVE (X|Y) (up to a constant term).
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State-Space Form

Definition (State-Space Form)

The state-space form is defined by the following pair of equations:

xi+1 = Jixi + gi + ui (state)

zi = Hixi + bi + wi (observation)

Here xi , zi are vectors representing a discrete random variables.

In general the elements of xi are not observable.

We assume that the elements of zi are observable.

ui and wi are white noise processes.

We assume that all vectors and matrices take values in Euclidean
space and can vary with i , but apart from xi and zi , that they only
vary in a deterministic manner.
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State-Space Form

Furthermore, we denote Qi
def
= E (uiu

T
i ) and Ri

def
= E (wiw

T
i ), and assume

that the following hold:

E (uix
T
0 ) = 0 (4)

E (wix
T
0 ) = 0 (5)

E (uiw
T
j ) = 0 for all i , j (6)
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Kalman Filter Notation

Definition

Denote Yj
def
= (z0, z1, . . . zj). By x̂i |j , (resp. ẑi |j) we shall mean the best

linear minimum variance estimate(BLMVE) of xi (resp. zi ) based on Yj .
We also define

Pi |j
def
= E{(xi − x̂i |j)(xi − x̂i |j)

T} (7)

and call this the error matrix. When i = j , the estimate is called a filtered
estimate, when i > j , the estimate is called a predicted estimate, and
when i < j , the estimate is called a smoothed estimate
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Discrete Kalman Filter

Theorem (Kalman, 1960)

The BLMVE x̂i |i may be generated recursively by

x̂i+1|i = Ji x̂i |i + gi (predicted state)

Pi+1|i = JiPi |iJ
T
i + Qi (predicted state error matrix)

ẑi+1|i = Hi+1x̂i+1|i + bi+1 (predicted observation)

ri+1
def
= zi+1 − ẑi+1|i (predicted obs error)

Σi+1
def
= Hi+1Pi+1|iH

T
i+1 + Ri+1 (predicted obs error matrix)

Ki+1 = Pi+1|iH
T
i+1Σ

−1
i+1 (Kalman gain)

x̂i+1|i+1 = x̂i+1|i + Ki+1ri+1 (next filtered state)

Pi+1|i+1 = [I − Ki+1Hi+1]Pi+1|i (next filtered state error matrix)
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Discrete Kalman Filter

If the initial state x0 and the innovations ui , wi are multivariate
Gaussian, then the forecasts x̂i |j , (resp. ẑi |j) are minimum variance
estimators(MVE).

Note that the updated filtered state estimate is a sum of the
predicted state estimate and the predicted observation error weighted
by the gain matrix.

Observe that the gain matrix is proportional to the predicted state
error covariance matrix, and inversely proportional to the predicted
observation error covariance matrix. Thus, in updating the state
estimator, more weight is given to the observation error when the
error in the predicted state estimate is large, and less when the
observation error is large.
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Kalman Filter Initial State Conditions

To run the Kalman filter, we begin with the pair x̂0|0, P0|0 (alternatively,
one may also use x̂1|0, P1|0). A difficuly with the Kalman filter is the
determination of these initial conditions. In many real applications, the
distribution for x0 is unknown. Several approaches are possible.

For stationary state series, we can compute x̂0|0, P0|0 directly.

Prior information.

Diffuse prior: x̂0|0 = 0, and P0|0 = kI , k � 0. The details are more
involved.

Or one may treat x0 as a fixed vector, taking x̂0|0 = x0, and P0|0 = 0,
and estimate its components by treating them as extra parameters in
the model. The details are more involved.

General rule of thumb is that for long time series, the initial state
conditions will have little impact.
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Kalman Filter Stability

Under certain conditions, the err matrices Pi+1|i (equivalently Pi |i ) will
stabilize

lim
i→∞

Pi+1|i = P̄ (8)

with P̄ independent of P1|0. Convergence is often exponentially fast.

This means that for stable filters, the initial state conditions won’t
have much impact so long as we have enough data to get to a stable
state. Need to be more concerned with initial state conditions in
small samples.

We gain significant computational advantage exploiting convergence
in the filter. Especially when the matrices are time-invariant, the the
predicted observation err matrix and the Kalman gain stabilize, too.
See next slide.
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Kalman Filter Stability

This part is independent of the data

Pi+1|i = JiPi |iJ
T
i + Qi (predicted state error matrix)

Σi+1
def
= Hi+1Pi+1|iH

T
i+1 + Ri+1 (predicted obs error matrix)

Ki+1 = Pi+1|iH
T
i+1Σ

−1
i+1 (Kalman gain)

Pi+1|i+1 = [I − Ki+1Hi+1]Pi+1|i (next filtered state error matrix)

x̂i+1|i = Ji x̂i |i + gi (predicted state)

ẑi+1|i = Hi+1x̂i+1|i + bi+1 (predicted observation)

ri+1
def
= zi+1 − ẑi+1|i (predicted obs error)

x̂i+1|i+1 = x̂i+1|i + Ki+1ri+1 (next filtered state)
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Kalman Filter Divergence

Numerical instability in the algorithm, round-off errors, etc., can
cause divergence in the filter.

Model fit. If the underlying state model does not fit the real-world
process well, then the filter can diverge.

Observability. If we cannot observe some of the state variables(or
linear combinations), then we can get divergence in the filter.
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Kalman Filter Other Items

Kalman advantage: real-time updating. No need to store past data to
update current data.

Can handle missing data, since the matrices in the algorithm can vary
over time.

Smoothing. The filter algorithm above gives BLMVE at time t based
on data up to time t. However, once all data is in, we can make better
estimates of the state variables at time t using also data after time t.

Alternative forms for the filter algorithm based on algebraic
manipulation of the equations. Information filter computes P−1

i |i .

Depending on the situation, this can be more(or less) useful.
Square-Root filter uses square roots of P−1

i |i . It is more
computationally burdensome, but can improve numerical instability
problems.
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Kalman Filter Other Items

Non-linear state-space filters. This is called the Extended Kalman
Filter. Here, we allow arbitrary functions in the state-space
formulation, rather than the linear functions above.

xi+1 = f (xi , gi , ui ) (state)

zi = h(xi , bi ,wi ) (observation)

One proceeds by linearizing the functions about the estimates at each
step, and thereby obtain an analogous filter algorithm.

There is a continuous version of the filter due to Kalman and Bucy.
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Maximum Likelihood Estimation

If the initial state x0 and the innovations ui , wi are multivariate Gaussian,
then the distribution of zi conditional on the set Yi−1 is also Gaussian, and
the error matrices above are covariance matrices of the error random
variables.

zi |Yi−1 ∼ N(ẑi |i−1, Σi ) (9)

Now let us suppose that the state-space vectors and matrices depend on
certain unknown parameters. Let us denote by θ the vector of these
parameters. We may form the likelihood function by taking the joint
probability density function(pdf):

L(z ; θ) =
n∏

i=1

pdf (zi |Yi−1) (10)

Steven Lillywhite () Kalman Filtering and Model Estimation 21 / 29



Maximum Likelihood Estimation

Then the log of the likelihood function is

log(L(z ; θ)) = −mn
2 log(2π)− 1

2

n∑
i=1

{log(det(Σi )) + rTi Σ
−1
i ri} (11)

By maximizing log(L(z ; θ)) with respect to θ for a particular realization of
z , we obtain the maximum likelihood estimates for the parameters. The
main point of this section is that log(L(z ; θ)) may be computed via the
Kalman filter, since the algorithm naturally computes both ri and Σi .
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Estimating Commodities Models

Kalman filtering with maximum likelihood can be used to estimate
parameters in various models in financial engineering applications.

One such use is for the estimation of parameters in commodities
models. Here the state system would model the spot price, and the
observation system would be futures prices.
Kalman filtering can be useful here for the following reasons

It is not uncommon that there is no true spot price process in the real
world.

Even if there is a spot price process, it can be be highly illiquid, error
prone, and unreliable for modelling.

In multi-factor models, we may have the spot price divided into
unobservable components.
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A Two-Factor Model of Schwartz-Smith for Oil prices

Combining geometric brownian motion with mean-reversion. This is the
short-long model of Schwartz-Smith. The idea is that short-term
variations revert back to an equilibrium level. But the equilibrium level is
uncertain, and follows a Brownian motion process with drift.

ln(St) = ξt + χt (12)

dξt = µξdt + σξdWχ (13)

dχt = −κχtdt + σχdWξ (14)

dWχdWξ = ρχξdt (15)
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A Two-Factor Model of Schwartz-Smith for Oil prices
We shall use the risk-neutral framework to price derivatives. We shall
assume that the market price of risk is constant, and we write:

dξt = (µξ − λξ)dt + σξdW̃χ (16)

dχt = (−κχt − λχ)dt + σχdW̃ξ (17)

Here (λξσξ, λχσχ) denotes the change of measure according to the
Girsanov theorem. We shall denote µ∗ξ = µξ − λξ. Under these
assumptions, we obtain that the distribution of ln(St) is normal, and

ln(F (t,T )) = e−κ(T−t)χt + ξt + A(T − t) (18)

A(T − t) = µ∗ξ(T − t)− (1− e(−κ(T−t))λχ/κ

+ 1
2 (1− e−2κ(T−t)) + 1

2σ
2
ξ (T − t)

+(1− e−κ(T−t))ρχξσχσξ/κ
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Parameter Estimation Via Kalman filter MLE

State Equation: discretize the model for the spot price

Measurement Equation: discretize the formula for the futures price in
terms of the spot. Add noise term.

We estimate the parameters in the model using maximum likelihood
with the Kalman filter.
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State-Space Formulation

xt = Jxt−1 + g + ut−1 (19)

where

xt =

[
χt

ξt

]
g =

[
0

µ∆t

]
J =

[
e−κ∆t 0

0 1

]
(20)

and ut ∼ N(0,Q), with

Q =

[
(1− e−2κ∆t)σ2

χ/2κ (1− e−κ∆t)ρσχσξ/κ
(1− e−κ∆t)ρσχσξ/κ σ2

ξ∆t

]
(21)

Here, ∆t represents the data frequency, or time between observations.
Note that J, g , and Q do not vary with time.

Steven Lillywhite () Kalman Filtering and Model Estimation 27 / 29



State-Space Formulation

For the observation equation, we have

zt = Htxt + bt + wt (22)

where
zt = [log FT1(t) log FT2(t) . . . log FTm(t)]T (23)

bt = [A(φ(t,T1)− t) A(φ(t,T2)− t) . . . A(φ(t,Tm)− t)]T (24)

Ht =


e−κ(φ(t,T1)−t) 1

e−κ(φ(t,T2)−t) 1
. . .

e−κ(φ(t,Tm)−t) 1

 (25)
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State-Space Formulation

Here wt ∼ N(0,R) represents measurement error, which could come about
via error in price reporting, or alternatively can represent errors in fitting
the model. To simplify the problem, it is common practice to take the
matrix R to be diagonal, or even a constant times the identity. This
corresponds to assuming that the measurement errors are not correlated,
resp. that measurement errors are uncorrelated and equal for all
maturities. This assumption has the effect of introducing m, resp. 1, extra
parameter(s) to be estimated with the model.
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