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Abstract

Many securities such as stocks exhibit directionality in their prices. This is often
modelled as a drift term in diffusion models of the price. We show why it is so hard
to estimate this drift.

1 Introduction

Many people feel that stock prices tend to rise over time. Of course, they never rise
continuously without any drops. Stock prices go up and down all the time, month after
month, day after day, minute by minute. However, many stocks will appear to be going
up more on average than going down. This can often be seen by looking at graphs of stock
prices covering many years.

One way to attempt to describe this behavior is with stochastic models. One of the sim-
plest models for (non-dividend paying) stock prices is that of geometric Brownian motion
(GBM). It looks like the following.

dS

S
= µdt+ σdW (1.1)

xb Here, S = S(t) represents the stock price, W = W (t) represents a standard Brownian
motion, and µ and σ are assumed to be constants. We call µ the drift and σ the volatility.
Intuitively, the equation states that the instantaneous returns from the stock are given
by a fixed rate of return µ plus a random amount. If there were no random component,
then the return would always be µ and the stock price itself would rise as an exponential
function

S(t) = S(0)eµt (1.2)

However, with the random component included, the stock can deviate from a little
to a lot from the basic exponential path. (Note that this is not to say that the stock
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price is mean-reverting to a fixed exponential path). The figures at bottom show some
sample paths from the same generating model (1.1). Of course, any particular figure could
potentially represent a probabilistically extreme path. But we claim the selection below
consists of fairly typical paths, in some sense.

To see why, consider the following. If we make the change of variable Y = log(S) and
apply Itô’s lemma, we get

dY = (µ− σ2

2
)dt+ σdW (1.3)

From this we derive the following

Y (t) = Y (0) + (µ− σ2

2
)t+ σW (t) (1.4)

hence

S(t) = S(0)e[(µ−
σ2

2
)t+σW (t)] (1.5)

It follows that S(t)|S(0) is log-normally distributed with

E[S(t)|S(0)] = S(0)eµt (1.6)

and

V ar[S(t)|S(0)] = S(0)2e2µt(eσ
2t − 1) (1.7)

Hence for the examples below, with S(0) = 45, µ = 0.1 and σ = 0.2, we find that
E[S(1)|S(0)] = 49.73 and V ar[S(1)|S(0)] = 100.94, giving a standard deviation of around
10. For the ten year plots we have E[S(10)|S(0)] = 122.32 and V [S(10)|S(0)] = 7359.09, or
a standard deviation of around 85. So typical ending values would be in the range 40− 60
for the one-year plots and 37− 207 for the ten-year plots.

We note in passing the pathological behavior that occurs when µ > 0 but µ− σ2

2
< 0.

In such a case, the expected value of S grows exponentially, while any given path tends
toward zero. What happens is that any path will trend towards zero, but from time to
time make a large upward excursion.

2 Estimating the Drift

Let us now consider the following inverse problem. We are presented with a time series,
such as a history of stock prices, we assume the model (1.1), and we try to then estimate
the parameters µ and σ using statistics or other means. We shall assume that we know σ.
Not knowing σ adds complications, but does not alter the main point of this note.

Let’s look at log returns. If we first take log of the prices, we have the model (1.4).
From this it follows that for equal increments of time ∆t

Y (t+ ∆t)− Y (t) = (µ− σ2

2
)∆t+ σ[W (t+ ∆t)−W (t)] (2.1)
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This means that Y (t + ∆t) − Y (t) is distributed normally with mean (µ − σ2

2
)∆t and

variance σ2∆t. Let us now consider a time interval from time zero to T , divided into n

equal increments of ∆t. So T = n∆t. Let Yi
def
= Y (i∆t) and Zi

def
= Yi − Yi−1. Hence the Zi

are independent draws from N((µ− σ2

2
)∆t, σ2∆t).

2.1 Maximum Likelihood

Let us consider the maximum likelihood estimator(MLE) of µ. We form the joint prob-
ability distribution function of the (independent) Zi, take its log, and call this function
l(Z, µ). Then

∂l

∂µ
=

1

σ2

n∑
i=1

Zi −
µT

σ2
+
T

2
(2.2)

We may show that a maximum for l occurs when this is zero, giving the maximum
likelihood estimate µ̂ for µ

µ̂ =
1

T

n∑
i=1

Zi +
σ2

2
(2.3)

Now

E[µ̂] =
1

T

n∑
i=1

E[Zi] +
σ2

2
=

1

T

n∑
i=1

(µ− σ2

2
)∆t+

σ2

2
= (µ− σ2

2
) +

σ2

2
= µ (2.4)

so that µ̂ is unbiased. Similarly

V ar[µ̂] =
1

T 2

n∑
i=1

V ar[Zi] =
1

T 2
σ2T =

σ2

T
(2.5)

With a simple application of the Cauchy-Schwartz inequality one can show that for any
unbiased estimator of µ, M , its variance is bounded below by V ar(M) ≥ 1

I(µ)
, where I(µ)

is the Fisher information. This result is known as the Cramér-Rao Inequality. In our case,
we may compute the Fisher information as

I(µ) = −E
[
∂2l

∂µ2

]
= −E[− T

σ2
] =

T

σ2
(2.6)

Hence the MLE of µ achieves the Cramér-Rao lower bound for variance and is thus a
minimum-variance unbiased estimator. So in this sense, it is a “best” estimator.

Remark 1. Note that if we change variables back from Z to Y to S, this estimator is

µ̂ =
[log(S(T ))− log(S(0))]

T
+
σ2

2
(2.7)

In particular, it only depends on the first and last data points.
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2.2 Uncertainty in the Estimate

Next we shall consider the uncertainty in the estimate µ̂. From the above calculations of
the mean and variance, we have that the distribution of µ̂ is

µ̂ ∼ N(µ,
σ2

T
) (2.8)

or equivalently

√
T (µ̂− µ)

σ
∼ N(0, 1) (2.9)

Now choose a real number α between zero and one. We wish to have confidence 1 − α,
which means that typically we shall choose a value for α such as 0.05 or 0.01 in order to
have 95%(resp. 99%) confidence. Let N(x) denote the cumulative distribution function
for the standard normal distribution N(0, 1). Let a > 0 be such that N(a) = 1 − α/2.
Thus P (−a < X < a) = 1− α for X ∼ N(0, 1). So we have probability of 1− α that

−a <
√
T (µ̂− µ)

σ
< a (2.10)

or −aσ√
T
< µ̂− µ < aσ√

T
(2.11)

So, for a given level of probability, α, this gives us bounds on how close our estimate µ̂ is
to the actual value µ. Remember that it means that with probability 1−α, this bound will
hold. So if we simulate paths, compute the estimate and use α = 0.05, then on average,
95 times out of 100 this bound will hold. On average 5 times out of 100, it won’t hold.

Remark 2. We may derive the above results in a simpler fashion. For brevity, we’ll
consider Brownian motion with drift, although the arguments are the same for GBM. So
let X be a Brownian motion with drift.

X(t) = X(0) + µt+ σW (t) (2.12)

We know that Y
def
= X(T )|X(0) is normally distributed with E[Y ] = E[X(T )|X(0)] =

µT +X(0) and V ar[Y ] = V ar[X(T )|X(0)] = σ2T . Hence, Y−X(0)−µT
σ
√
T

∼ N(0, 1). Thus for

a given level of confidence α as above, choosing a as above so that N(a) = 1 − α/2, we
have with probability 1− α

−a < Y −X(0)− µT
σ
√
T

< a (2.13)

and rearranging terms we get

−aσ√
T
<
Y −X(0)

T
− µ < aσ√

T
(2.14)

So we define our estimate of the drift µ̂
def
= Y−X(0)

T
, which is the MLE in this case, and we

have recovered our results above.
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Remark 3. Note that whether we consider all the data, or only the first and last data
points, our estimate of the drift is the same. To estimate the drift, what matters is the
maximum time interval of the observations. On the other hand, to estimate the volatility,
just observing the endpoints of the data won’t help much. The best estimate will use all the
data. This is all due to simple properties of Brownian motion.

2.3 Punchline

Finally, let us plug in some numbers to illustrate how difficult it can be to estimate the
drift µ. We shall round all numbers to the second decimal place. For stocks, typical values
for µ ought to be in the range −0.2 to 0.2, more or less. Saying the drift of a stock is 0.1
is saying that the stock has an expected return of 10%. Suppose now, for a given level of
confidence as expressed by α above, we wish to have a bound on our estimate of length δ,
where δ shall be a small number. Specifically, let us impose that with confidence level α,
we wish to have

−δ
2
< µ̂− µ < δ

2
(2.15)

which says that the true value µ is within δ of the estimate µ̂. We can solve for this by
varying T . That is, let us solve

aσ√
T

=
δ

2
(2.16)

so that

T =
4a2σ2

δ2
(2.17)

Lets run some simple numbers. Let us take confidence level α = 0.05, or 95% confidence.
This gives a value for a of 1.96. Let us impose a precision of estimation δ = 0.01. A typical
volatility for a stock might be σ = 0.2. Putting this together gives

T =
4a2σ2

δ2
= 6146.33 (2.18)

So for fairly reasonable assumptions, we find that it would take over six thousand years of
data to estimate the drift within an accuracy of 0.01! If we change the volatility to σ = 0.4,
then it would take over 24,000 years. Even for σ = 0.05, it would take 384 years.

If we keep the above numbers, and σ = 0.2, then even to find the drift within a bound
of δ = 0.1 requires 61 years of data. That is, 61 years of data just to find an estimate
of µ, perhaps something like 0.15, and be able to say at a level of 95% confidence that
0.1 < µ < 0.2.

For a stock with ten years of history, we get δ = 0.25. For most of these stocks, you
can essentially say nothing about the drift with any good level of confidence. For a stock
with 20 years of history, δ = 0.18. With only a 90% level of confidence, δ = 0.15. Same
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story. If we estimate the drift to be 0.1 for a stock with 20 years of history, then at a 90%
confidence level, we can only assert that it is likely to be between 0.03 and 0.18, which
isn’t likely to impress or help anyone.

3 Summary

We have shown how estimates of the drift in a GBM model using a “best” estimator are
quite imprecise over time scales commonly used in economic and financial applications.
The same arguments apply as well for ordinary Brownian motion with drift. We should
thus be suspicious whenever anyone attempts to estimate drifts in such models.

It is obvious that in a world of finite resources, nothing can grow forever at a positive
exponential rate. So the use of GBM to model most phenomena would be interpreted as
applying over the short term. For stocks, in particular, we would expect regime changes
in the prices long before we would ever have enough data to estimate precisely the drift
under a GBM model. Note that we are not claiming that GBM is a good or appropriate
model to describe stock prices. We are saying that even if it were, no one would ever be
able to estimate the expected rate of returns with any confidence for just about any stock
you care to name.

Where the GBM model for stock prices often gets used is in the pricing of options. One
of the most widely employed techniques is that of the risk-neutral framework, where the
physical drift is not needed to compute option prices. The inherent difficulties in estimating
the real-world drift of asset prices make such risk-neutral theories all the more appealing.
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